Estimation of Singular Covariance Matrices of Random Effects
نویسندگان
چکیده
منابع مشابه
More about measures and Jacobians of singular random matrices
In this work are studied the Jacobians of certain singular transformations and the corresponding measures which support the jacobian computations.
متن کاملRandom matrix theory and estimation of high-dimensional covariance matrices
This projects aims to present significant results of random matrix theory in regards to the principal component analysis, including Wigner’s semicircular law and Marčenko-Pastur law describing limiting distribution of large dimensional random matrices. The work bases on the large dimensional data assumptions, where both the number of variables and sample size tends to infinity, while their rati...
متن کاملPartial Estimation of Covariance Matrices
A classical approach to accurately estimating the covariance matrix Σ of a p-variate normal distribution is to draw a sample of size n > p and form a sample covariance matrix. However, many modern applications operate with much smaller sample sizes, thus calling for estimation guarantees in the regime n p. We show that a sample of size n = O(m log p) is sufficient to accurately estimate in oper...
متن کاملEstimation of Large Covariance Matrices
This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (logp)/n→ 0, and obtain explicit rates. The results are uniform over some fairly natural well-conditioned fam...
متن کاملmore about measures and jacobians of singular random matrices
in this work are studied the jacobians of certain singular transformations and the corresponding measures which support the jacobian computations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Dairy Science
سال: 1986
ISSN: 0022-0302
DOI: 10.3168/jds.s0022-0302(86)80677-4